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PREFACE

This is one of a continuing series of reports of the Ford Foundation

sponsored Research Program in University Administration at the University

of California, Berkeley. The guiding purpose of this program is to under-

take quantitative research which will assist university administrators and

other individuals seriously-concerned with the management of university

systems both to understand the basic functions of their complex systems

and to utilize effectively the tools of modern management in the allocation

of educational resources.

This paper presents a Markov model of a graded faculty system and in-

vestigates preferred policies for aehieving'a desired balance between

faculty of various ranks. The problems associated with faculty promotion

and other attrition are a complex confluence of many political, social,

economic, and traditional forces which are greatly abstracted for the de-

scriptive purposes of this model.

The research reported in the Paper is not a complete analysis of the

vital problem of faculty retention and advanCement. However, this is an

illustrkion of the conceptual and computational feasibility of applying

sophisticated operations research techniques to important aspects of

university management.
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ABSTRACT

This report considers a university faculty which is divided into k

grades. The total size is to remain fixed but the proportions in the

grades may vary. The problem is to find control strategies which will

bring about desired changes in these proportions. This report is confined

to investigating what can be achieved tly controlling the numbers of new

appointments made into each grade. It is assumed that movements within

the system and to the outside would be governed by time homogeneous tran-

sition probabilities. A number of theorems are presentej showing that

not all structures can be attained and that some which are attainable can-

not be maintained. Some bounds are given for the length of time

needed to achieve the goal when this is possible. A number of'sub-optimal

strategies are proposed and their performance is studied empirically.

Suggestions are made for further research. Finally, a nontechnical

summary of this analysis is given at the beginning of this report.
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I. SJMMARY OBSERVATIONS

I. Introduction

The problem addressed by this report is that of maintaining a

satisfacto17 balance between the numbers of faculty in the various grades

in an institution of higher education. It has been found, for example, in

the College of Engineering at Berkeley, that if present promotion and

attrition rates are continued into the futGre then an unduly top-heayy

structure will result. This has been a conclusion reached in many man-

power systems and it commonly results from a history of expansion. The

relatively high promotion rates which were necessary and desirable during

a period of expansion are found to be too large to maintain a satis-

factory and stable structure once the expansion has ceased. The manage-

ment problem which this situation poses is how to maintain the required

balance between the grades and, at the same time, maintain adequate pro-

potion prospects to attract and retain high quality staff.

There are three main aspects of the system which are amenable to

control as follows:

(a) The promotion and demotion policies.

(b) The losses due to resignation (through depressed salary scales,

early retirement benefits, etc.)

(a) The proportions recruited into each grade.

Of these the last involves the least disruption of the system and is

1
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thus an obvious candidate for initial investigation. The work re-

ported here is thus concerned with showing what changes in structure

can be produced by making changes in the appointment pattern. All

other parameters of the system are assumed to be constant.

2. Attainability and Maintainability

A principal conclusion, with important practical
implications, is that

not every desired structure can be attained. Furthermore, there are some

structures which, though they can be attained, cannot be maintained.

A good deal of effort has been devoted to trying to characterize these

structures and answers have been found to some of the most important

questions. For example, a set structures has been found which cannot

be reached no matter where we start. Another set can be reached from

any starting point, and there are yet others which can only be reached

from some starting points but not others.

3. Optimal Strategies

If a desired structure can be attained, it is necessary to know what

appointment strategy should be used. This analysis shows that there is

usually a choice of strategies and this raises the question of whether

some are better than others. The main criterion of optimality adopted

in this report is that of the number of steps (years in the academic

adfiteRtY needed to reach the goal. In general, it does not seem

possible to find the minimum number of steps needed but some useful re-

sults have been found which enable a lower bound to be calculated. In

certain cases_it is possible to find an upper bound as well.

4. Sub-Optimal Strategies

In the absence of a general method of finding optimal strategies,
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it seemed advisable tc find ways of achieving more limited objectives.

The first class investigated consisted of those which aim to get

as near as possible to the goal at each step. There is no single measure

of "distance" so a class of distance measures was investigated, each

member leading to a different strategy. The performance of these

strategies was investigated by making calculations for a three-grade

and a five-grade organization. The tentative conclusions to be drawn

from these calculations are as follows:

(a) The definition of what is meant by "distance" is not crucial.
All the strategies considered pr6duce very similar results.

(b) All of the strategies lead to points which can be maintained.
If the goal is not maintainable we shall have to be satisfied
with a nearby maintainable structure.

(c) The more grades in the system the longer it takes to :each
the goal.

(d) The rate of approach to the goal is very dependent on the
size of the loss rates. The higher the loss rate the eas-
ier it is to effect changes in the structure.

In order to give an idea of what is involved in implementing the

strategies which have been discussed, a verbal description of one of

the most successful is given. The Study first computes how many of the

existing members of the system will still be present in one year's

time and how they will be distributed throughout the system. Next,

it calculates the difference between the number desired in each grade

and the number who will be left. In general, some of these differences

will be positive and some negative. The positive differences are

called the "recruitment needs" for those grades. The final stage is to

distribute the new entrants to those grades with recruitment needs in

proportion to those needs.

Better strategies, which look farther ahead, have been proposed but

not investigated in detail.
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5. Further Work

The work carried out so far is incomplete at almost every point.

Some of the topics in which further work is needed are listed below.

(a) This study assumes that the faculty size is constant in time.

The theory should be extended to cover organizations whose

size changes over time.

(b) It is not known whether or not the strategies which look one

step ahead are near to the optimum. A first step toward the

elucidation of this point would be a comparison with those

which look two steps ahead.

(c) Some structures are not maintainable but it may be possiole

to remain near to them for a sufficiently long time. This

point needs investigation.

(d) The calculations in this report are based on typical but arti-

ficial data. Suitable data collected from various colleges

and campuses should be used to test the methods in practice.

6. Implications for Policy

The work described in the report is a step toward a general theori,

of control for Markov chain models of graded manpower systems. As such, it is

primarily a theoretical exercise intended to give some insight into the dynamics

of such systems. It was motivated by the problem facing a university whose

faculty structure was moving in an unwanted direction and there are several

conclusions which can be drawn which have important implications for those

faced with that problem. For any organization in which the assumptions of the

model apply, the following conclusions hold:

(a) Not all structures are attainable or maintainable by control-

ling the appointment policy alone. Those which are can be

found from results given in the report. Those which are not

can only be reached by making changes in the promotion rates

or by contriving to alter the leaving rate. The kind of changes

needed can also be determined from the results given.

(b) Some changes in structure can be brought about by appropriate

variations in the appointment policy. The best way to do this

is still an open question but several strategies have been

proposed which seem to give satisfactory results.
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II. MATHEMATICAL ANALYSIS

1. Statement of the Problem

The management of a g7aded manpower system such as a university

faculty involves making repeated decisions on appointments and promotions_

This paper is primarily concerned with hr ,col the "shape" of the

hierarchy by manipulating the pattern of appointments.

The problem may present itself to the management of the system in

a variet of ways. Perhaps the commonest arises when a period of expansion

comes to an end. It is then discovered that if past promotion rates are

continued in the future, he system will show unacceptable growth at the

top. This phenomenon has been'observed repeatedly in many kinds of organi-

zations. At Berkeley,. Branchflower's calculations for the College of

Engineering the same tendency. The management problem which then has

to be faced is what changes to make to bring the system under control. A

second situation is where one wishes to prepare in advance to cope with some

change in the external environment. For example, if a rew campus were to be

established which would be expected to attract senior faculty from an

existing campus, then the latter would wish to ensure in advance that

sufficient people were available who were capable of being promoted to fill

the gaps. In both examples, the problem may be stated as follows. At the

present, we have a system with a certain grade structure. At time T in the

future, we require it to have some other structure. What appointment and/or

recruitment policy should we adopt between now and T to ensure that the

goal is achieved?
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The main parameters of the system which we subject to management

control are the following:

(a) The numbers of people recruited into each grade at each

point in time.

(b) The numbers of people promoted (or demoted) between grades

of the system.

(c) The numbers of people dismissed or induced to leave ,

the system.

In most organizations there is no control over members who decide to leave

of their own free will. Control by (a) alone has many attractions. Chief

among these is that it has fewer adverse repercussions oa those who are

already in the system than the other two methods. To control unwanted

growth at the top by method (b) involves cutting promotion rates; method

(c) is usually reserved for use when all else has failed. It is for these

reasc.s that our main effort will be directed to (a) as a means of control.

We shall show that it is a fundamental control variable but that there are

severe limitations on what can be achieved by using it. This will lead us

to consider how methods (a) and (b) can be combined to arrive at our objec-

tives. We shall not discuss method (c). If this is available, our problem

is trivial since a combination of (a) and (c) can always be found to

achieve anysgoal as soon as de,ired.

2. The Model

Tb analyze the problem as stated above, a mathematical model of

the system is constructed. We shall use the Markov chain model first intro-

duced by Gani [1963] and Young [1961] for use in industrial and educational

organizations. These models have been used successfully on many occasions and
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they include all the basic factures required to describe a university

faculty system. Although the Markov chain model is a stochastic model we

shall treat it deterministically in this paper. The elements of the model

are as follows. We have a system consisting of k grades. At time

zero there are N members of the system of which a proportion xi(0)

are in grade i . Changes take place at discrete points in time (yearly

in a faculty system). The porportion who move from grade i to grade j

at any time is denoted by pij and the porportion who leave is wi ; pii

is the proportion who remain in the same grade. It follows at once that

k

.Z
1
p
ij

+ w
i
= 1 for i = 1, 2, . . . k

j=

For simplicity we shall assume that the system is maintained at e

constant size N by recruiting as many new members at any time as

there are leavers. We shall let pi(T) denote the proportion of new

recruits at time T who go into grade i . Finally, let xi(T) denote

the proportion of the N members of the system who are in grade i at

time T . Then there is a simple recurrence formula connecting xi(T+1)

mulx.1 (T) which may be expressed in matrix notation as follows:

x(T+1) = x(T) P + x(T)wip(T+1) (1)

where
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x(T) = (xl(T), x2(T), . .

w (wl, w2, wk)

p(T+1) = (pl(T+1), p2(T+1), . . pk(T+1))

xkm)

P

Pl1P12

P21P22

-Pk1Pk2

Plk

P2k

P
kk_

It is important to note that (1) can also be written in the form

x(T+1) = x(T)(P + w'p(T+1)) = x(T)Q(T+1) (2)

where Q(T+1) is a stochastic matrix.

The elements of P and w could be made functions of T but this would
0.4

only be appropriate if we wished to treat them as control parameters. We

will assume that they are fixed at their current values and see. what can be

achieved by exercising control over p(T+1) only. Our problem may now be

stated mive precisely as follows.

To find a sequence of vectors p(T+1) such that we pass from the

initial structure x(0) to the goal structure x* , say, in an "acceptable"

way. We deliberately leave open what,is meant by "acceptable". (I am not

aware of any other work on this problem.) The problem of a stationary

p , rather than P(T) , was discussed in Bartholomew, [1967]. The results

given there have since been extended by A. F. Forbes in a paper to be

published.

The elements of the vectors x(T) must all be positive and sum to one.

It is convenient for purposes of exposition to visualize what is happening in

geometrical terms. The structure at time T may be represented by a point
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in k-dimensional Euclidean space. It will lie in the positive orthant

on the hyperplane xl + x2 + . . . xk = 1 . In three dimensions this

region is an equilateral triangle in the positive octant. This represen-

tation leads us to apeak of moving from the point x(0) to the point x*

and to refer to the path or trajectory of the movement.

3. Two Basic Questions About x*

The foregoing discussion should not be taken to imply that the

problem we have set ourselves is always soluble. Before attempting to

find optimum sequences {p(T)} we shall first attempt to discover when

and whether a solution is possible. We consider this question in two

parts:

(a) Is x* attainable?

(b) Is it maintainable? That is can we remain at x* once we

have arrived there?

For practical purposes these questions are unnecessarily restrictive:

it will usually suffice to answer
V

(a') Can we get near enough to x* ?

(b') Can we remain near enough to x* for a sufficiently long

period of time?

The second two questions are less easy to answer so we shall concentrate

on the former but bear the latter in mind.

4. Condition for Attainability

We shall show that some points cannot be reached at all. Hence

if x* belongs to this set our goal is certainly unattainable. Some

other points are reachable from some but not all points. Finally, there

are points which can be reached (or, at least, approached arbitrarily closely)
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from any other point.

We first delineate the set of points which cannot be reached no

matter where we start. We do this by determining its complement which

we denote by A . The result is containe&in the following theorem.

THEOREM 1

Proof

A = {x I x >yP x, yc X}

where X = {x 1 x > 0, xl'= 1}

If x* can be reached at all it must be reachable from at least

one other point in X . That is there must be a y such that

x* = y(P + w'p)

for any such point x* > yP since rep > 0 . A is thus the set of

x* for which at least one such y den be found.

Although this theorem characterizes A it does not make it very easy

to determine the boundaries of the set in any particular case. Theorem

2 is more explicit on this point.

THEOREM 2

A is the convex hull of the points with co-ordinates

P
(i) + w

i
e
j

0 * 1, 2, . . . k; i = 1, k)

where P(i) is the vector of elements in the i
th

row of P and e
.J

is a vector of zeros with a 1 in the j
th

position.

Proof

Consider first the set of points which can be reached in one step

from e (i = 1, 2, . . . k) .
Clearly, all of these belong to A.
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The k sets reachable from each e will be termed primary regions.

Substituting T = 0, x(T) = ei in (2)

x(1) = e.P + e
1
w'p(1)

P + w
ij

E
1 j
p(1)e

j=

The primary region is thus

{xlx= P (1) + wi
j=
E1 aje

j
, Ea. = 1 a > 0 , i= 1, 2, . . . k} .

Consider next the set of points which can be reached from (y1, y2, . y
k
).

k
These co-ordinates may be written ji yiei .

Substituting this for x(1) in (3) now gives

k kx(1) =.w'p(1)1=E1 y1-e1P+- 1=E1 ye-

k
EyP (i)+Eyw p(1)e

1=1 i- 1=1 i i j=1 j -j

= 1E 1
y
i
{Pfi) + w

i j
E
1
p
j
(1)e

j
}== -

Hence, the set of points which can be reached from y is

ilxlx= it1 yi {P(i) +w
i j=
L1ije}, a > 0, Ea

j
= 1,y 0, Ey

i
- l

- _ = - j
>

But any point in this set is a convex combination of points in the primary

region. Hence, the totality of points in A is the convex hull of the

vertices of the primary region. These vertices are obtained by setting

a = e in (4) for each value of i . This gives the set of points
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P
(I)

+ w. e. (i, j = 1, 2, . . . k).

The number of points here is
'
k
2 and not all of them will be extreme

points of the convex hull. However, fo-.7 k small it is a simple mat-

ter to determine the region.

EXAMPLE 1

Consider a 3-grade system with the following parameters

P =

/
0.5 0.4 0

0 0.6 0.3

\O 0 0.8,

w = (0.1, 0.1, 0.2) .

Theorem 2 says that the region A ...will be the convex hull of the points with

co-ordinates

(.5 + .1, .4, 0)*, (0 + .1, .6, .3), (0 + .2, 0, .8)*

(.5, .4 + .1, 0)*, (0, .6 + .1, .3), (0, 0 + .2, .8)

(.5, .4, 0 + .1) , (0, .6, .3 + .1)*,(0, 0, 0.8 + .2)*

In this case the extreme points, which are marked with an asterisk, are

easily recognized by plotting them on the triangular plane of the region

X as in Figure 1. In higher dimensions the recognition of extreme points

is more difficult although algorithms are available. However, the mere

inspection of the set of co-ordinates given by Theorem 2 gives an idea

of the kind of structures which are attainable.

Condition for MaintainabilitY

This is easily derived as a special case of Theorem 1. If a point
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(0, 0, .) (.2, 0, .8) (1, 0, 0)

.5 .4 0

The region A when k .. 3 and P .. 0 .6 .3)

0 0 .8

Figure 1
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can be reached from itself then the system can remain there as long as

desired. Let S denote the set of maintainable points, then we have

THEOREM 3

S = {x 1 x > xP, xcX)

The recruitment vector required to hold the system at a particular x

of is easily obtained from (1).

THEOREM 4

If xeS then the system can be kept at that point,1111 choosing

p = x(I - P)/L

where L = xw', the proportion of leavers.

This result leads to a more explicit description of the region S which

is given in the following theorem.

THEOREM 5

The vertices of S have co-ordinates proportional to

ei(I - P)-1 (i = 1, 2, . . . k)

with the constant of proportionality being determined so that the elements

sum to one.

Proof: From Theorem 4.

x = xwip(I P)-1

xw'
1 1

p e (I - P)
-1

-- =

for all points xeS . Hence, any point in S can be written as a convex

-1
- ination of the points ei(I P) multiplied by a scaling factor xw'
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to make the elements sum to one. The vertices of S thus have co-

ordinates proportional to e (I - P)
-1

COROLLARY

If w
i
= w (i = 1, 2, . . . k) then the co-ordinates of the vertices

are

e (I - P)
-1

, (i = 1, 2, . k)

Proof

The result follows at once on noting that, in this case xw' = 1

for all x .

THEOREM 6

If x*eS then we can get arbitrarily close to x* , no matter what

our starting pOint, by adopting the recruitment policy

Proof

p = x*(I P) /x*w' for all T.

If we apply a recruitment policy which is constant over time we may

write (2) in the form

x(T + 1) = x(T)Q

Q is a regular stochastic matrix so that the system will have a limiting

structure satisfying x = xQ . The limiting structure will therefore be

x* if we can find a ,p such that

x* = x*(P + w'p) with x*1' = 1 .

This equation is satisfied if we choose p as given in the theorem. 1-7
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At this point it is convenient to identify the practical implica-

tions of these theorems as listed below:

(a) If our goal vector x* is in A it can never be attained

by varying the appointment vector alone (Theorems 1 and 2) .

(b) If our goal vector x* is in A S it may be attainable

but it will not be possible to remain at x* once it is attained (Theorem

3). Whether or not we can remain sufficiently near to x* remains an

open question.

(c) If x*eS we can ultimately get as close as we please to x* ,

no matter where we start. Further we can reach the goal by using a con-

stant appointment policy (Theorems 3, 4, 5 and 6).

In the following section we shall investigate the best way of reaching x*

given that it is (or may be) attainable. If our goal is not in S there

are only two courses open to us. Either we must change the goal so that

it can be reached or we must change the parameters of the problem. This

amounts to resorting to methods (b) or (c) of Section 1. The means of

doing this are provided by Theorems 3 and 4. We must adjust the elements

of P , and by implication, the value of w so that x* lies within the

new S.

It may happen that the appointment vector needed to maintain the desired

structure is. itself unacceptable. For example, it may require that appoint-

ments be made only at the lowest level, so preventing the recruitment of

distinguished faculty at higher levels. In such an eventuality, it must

be accepted that the two requirements are incompatible and that one of

them, at least, must be relaxed.

5. The Problem r. Determining Optimal Appointment Policies

A successful appointment policy is one which achieves the desired



goal. An optimal policy is one which does so in the most "satisfactory"

way. It will help to clarify the attributes of an optimal policy if we

first identify some of the characteristics of an unsatisfactory policy.

We suggest that the following features are unt_sirable in any appointment

policy:

(a) a large number of steps to reach the goal.

(b) a series of abrupt changes from one time period to the next.

(c) passing through some undesired structures on the way to the goal.

(d) high cost (in terms of salaries, etc.)

The last point may simply be another aspect of (c) since high cost would

make some structures undesirable. We shall proceed on the assumption that

(a) is the most serious disadvantage and so try to devise strategies

which attain the goal in a small number of steps. We shall use (b) and

(c) as guides in choosing between strategies which take similar times

to reach the goal.

The mathematical problem which we shall try to solve is thus

the following: To find the smallest T , denoted by T* , such that there

exists a sequence of vectors {p(T)) with non-negative elements satisfying

T*
x* = x(0) T1 {P + w'p(T)}

If the goal is attainable in a finite number of steps, T* can

always be found, in principle, by direct computation. We would have to

set T* = 1, 2, . . . in turn and determine at each stage whether

or not the equations (5) had a solution in non-negative p(T)1s. The

17

(5)

smallest value of T* for which this was true would be the one required.

In practice this is a formidable task so we shall aim here to gain some

insight into the nature of the solution by elementary mathematical analysis.
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Our results are in the form of bounds en T* which, in exceptional

cases, may serve to determine its value. No computations have been made

to investigate the closeness of these bounds; this should have-high

priority in future work. The following theorems and their corollaries

contain the main results.

THEOREM 7

T* > T' where T' is the smallest T for which

Proof

If we are to have

x* x(0)P
T

T

x* = x(o) jn i
P + Wp(j)

=

for some T then the first term in the expansion of the product

on the right hand side cannot exceed x* since all the remaining terms

are necessarily non-negative. 1.-1

It should be noted that x(0)P
T

is the vector of the proportions of

the original members of the system who remain at time T . Hence

it is intuitively obvious that the goal cannot be reached until all of

these have decreased below the target levels. The result of Theorem

7 is quite general but from this point onwards we shall have to make

a further assumption in order to make progress. We shall assume that

w w for all i . This means that an individual's chance of leaving

is the same no matter where he is in the hierarchy. In practice

leaving rates tend to decrease as we move from the lower to the higher

ranks. In spite of this restriction we may hope to gain some insight
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into the nature of the solution which will pave the way for further

generalization. Atte: Theorem,8 we shall make the additional assumption

that the promotion matrix P is upper triangular,. There is no lack

of realism in this assumption since demotions rarely, if ever, occur.

THEOREM 8

T-1
x(T) = x(0)P

T
+ w

j=0
p(T - j)PJ

Proof

The proportion of leavers who have to be replaced at time T

is x(T)w' = w because all the elements of w are equal to w .

Hence, wp(T - DO is the vector of the proportions of people

recruited at time T - j who survive time T . The expression

on the right hand side in the statement of the theorem is thus the

cumulative sum of all survivors, including those who were present

at T = O. El

The point of this theorem is that it shows that x(T) can be

expressed as a linear function of the appointment vectors when the loss

probabilities are equal. This represents a very considerable

cation which makes it possible to arrive at the following results.

THEOREM 9

T* < T" where s the smallest value of T such that

x*P
(T 1)

- x(0)P > 0

Proof

The method of proof is to show that x* can be reached in T"



20

steps if the condition given holds. The smallest possible number of

steps obviously cannot exceed T" . If the goal is reached after T

steps then

T-1

x* = x(0)P
T
+ w

j
E
0

p(T - j)P3 (by Theorem 8).
=

Re-write this equation in the form

T-1 x* - x(0)P
T

E p(T - j)PJ - .

j0 Y
(6)

w

Then it may easily be verified that (6) is satisfied by

P(T j) = YP-i[w(1
w)3 for j = 0, . . T . (7)

1 - (1 - w)

For this to be an admissible solution it is also necessary that All of

the vectors p(T j) should have non-negative elements summing to one.

We first show that

p(T j)1' = 1 where 1' is the vector (1, 1, . . 1) .

Let u = yP-J then u is the vector which when post-multiplied

j times by P gives y . Since the loss rates are equal, each multi-

plication by P reduces the total size by a factor (1 - . Therefore,

But

ul' = (1 - w)-J yl'

yl' (x *l'
x(o)pTil)/14 w)T) /w
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Therefore,

y1' = (1 - (1 0 T
}/w(1 - w)i .

Substitution in (7) now yields the required result.

The requirement that the elements should be non-negative is that

yP-i > 0 for j = 0, 1, 2, . . . T - 1

which, substituting for y , may be written

x*P1 - x(0)PT-J > 0 , j = 0, 1, 2, . . . T - 1 . (8)

Suppose that these inequalities are satisfied for j = jo then it

follows that they are also satisfied for j = j - 1 since a vector of
o

non-negative elements multiplied by a matrix with non-negative elements

yields another non-negative vector. Hence it is sufficient for (8) to be

satisfied with j = T - 1 and this gives the condition of the theorem. ri

Note that condition (8) is always satisfied for j = 0 if T > T" (see

Theorem 7). Further insight into the nature of the conditions can be

obtained by writing out the first two elements in the vector inequality

These are

x*P
-(T - 1)

- x(0)P > 0

-(T - 1)
*p - x (8)p > 0

-1 11 -1 11

x*q
[T - 1] -(T - 1)

-1 12 + x 2 22

[T
- x

1
(0)P

12
- x2(0)p22 1 0

(9)
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where

T-2
[T-1] J-T+1 -J-1

c112 -P12 JtO Pll p22

is the (1, 2)
th

element in the (T-1)
th

power of P
-1

. The first

inequality can obviously be satisfied by making T sufficiently large.

However, the same is not true in general for the second inequality

because x*
1

and x*
2

have coefficients of opposite sign and comparable

magnitude.

If a value of T" can be found then (7) gives a sequence of

appointment vectors which will achieve the goal in T" steps. This

may not be an optimum sequence but if T" is acceptably small the

strategy is well worth considering. It is the only one we have for which

the number of steps to reach the goal is known in advance but it relates

only to the case of equal losS probabilities.

The strategy implied by (7) has the following interpretation.

it requires us to choose p(T - j) in such a way that the proportions

of those recruited at time T - j who will remain at time T is pro-

portional to y for all j . The vector wy may be described as

the "recruitment needs" at time T and so the strategy requires us to

select appointment vectors in the light of what the recruitment needs

will be at time T .

Our remaining result is much more limited in its scope. Instead

of trying to reach the goal in every grade we merely try to meet the

goal in the lowest grade only. In this special case a complete solution

can be achieved if P is upper triangular and w
i
= w for all i .



THEOREM 10

Let Ti be the smallest number of steps in which the target

can be reached in grade 1 , then Ti is the smallest T for which

x* p
T

x (0)
< (1 - p

T
)/(1 -

P11)
0 <

1 11 1

11

Proof From Theorem 8

x1(T) = p
T

1
x
1
(0) + w{p

T-1
p
1
(1) + p

1

11
p
1
(2) + . . . + p

1
(T)) .

1 11

We can only make xl(T) = xi if xi is between the minimum and the

maximum of the right hand side of the equation. It is obvious that the

minimum occurs when

Pi(1)
p1(2)

Pl(T)
0

and the maximum when

p
1
(1) = p

1
(2) = . . . = p

1
(T) = I

Hence, at least one solution in positive pi(j)'s exists if

p
T

x (0) < x* < pT 14{ T-1 T-2
11 1 -- 1 11x1 Pll Pll 1}

which. is equivalent to the inequalities given in the statement of

the theorem.

Corollary 10.1

The goal in grade 1 can ultimately be reached if

xi < max (w
Pllx1(0)'

w/(1 - p
11

))

23

(10)
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Proof

Re-write (10) in the form

p
T
1
x
1
(0) < x* < w/(1 - p

11
) + p

11
{x

1
(0) - w/(1 - pli)}

1

Then if x
1
(0) > w/(1 -

Pll
) the upper limit is a decreasing function

of T and so if the inequality is satisfied at all it is satisfied for

T = 1 . This gives

xt < w + Plixi(°)

If x1(0) < w/(1 - p
11

) the upper limit is a non-decreasing function

of T with maximum value, occurring in the limit as T 03, on w/(1 - P11).

In the limit, the. lower inequality is always satisfied and so the result

follows. Ei

Corollary 10.2

Theorem 10 provides a complete solution to the problem of finding

T* when k = 2 and shows when a solution exists. (Triangular P and

w.
1
= w for all i ).

The geometric form of the two limits of Corollary 10.2 shows

that the limiting values will be attained quite rapidly for typical

values of 1311(0.6 - 0.7). This means that if the goal can be achieved

at all it is likely to be reached quickly.

Corollary 10.3

T* > T* .

1

In this section we have defined an optimal policy as one which

reaches the goal in the smallest number of steps. At the present
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time it does not appear computationally feasible to determine the

optimal policy in this sense in any but very special cases. Nevertheless,

the theorems which we have given provide some information about the

value of T* and hence provide a yardstick with which proposed policies

may be compared. In the remainder of this report we shall be considering

some strategies which seem intuitively reasonable. In our suggestions

for further work in Section 7 we shall propose that they be evaluated

in part by the criterion which forms the basis of this section.

6. Strategies Which Look One Step Ahead

We have seen that it is not possible, in general, to find strategies

which will make the desired change of structure in the minimum number

of steps. However, it is possible to devise strategies which have certain

sub-optimal properties. In this and the following section we shall de-

scribe some such strategies and investigate their performance.

The first class of strategies is designed to get as near as possible

to the goal in one step. In the short term this is an attractive property

but it may have to be paid for in the later stages of the transition. For

a system starting at x(0) we have to find a point x(1) which can be

reached from x(0) and which is such that the distance from x(1) to

x* is a minimum. Having reached x(1) so that then becomes the starting

point for another step, and so on. There is, of course, no unique mea-
-:N.

sure of "distance" in this context, and different measures will lead to

different strategies. A class of reasonable measures of the distance from

x(1) to x* is given by

k
D = lxi * - x (1) la , a > 0 .
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We shall investigate the case a = 1 and a = 2 . First we prove two

theorems about all members of this class.

THEOREM 11

If x* can be reached in one step from x(0) then a strategy

minimizing D will do this.

Proof

The result is obvious because if x* can be reached in one step

there must exist at least one x(1) which makes D zero. 17

THEOREM 12

The vector p which minimizes D also minimizes

where

Proof

k

D' = iE
1

ly
i
- p

i '
la a > 0

=

y = (x* - x(0)P)/x(0)w' .

x* - x(1) = x* - x(0)(P + w'p)

f'-

x* - x(0)P'

= x(0)w p

x(0)w'

= constant {y - p}

Hence, any function of the differences xi* - xi(1) will be proportional

to the same function of the differences yi - pi ID

This theorem has an interesting interpretation. If we were to

take p = y then it may easily be verified that the goal would be reached
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in one step. However, we cannot do this in general because the elements

of y are not necessarily all positive. Theorem 12 leads us to choose

an admissible p which in a certain sense is nearest to the inadmissible

which would have taken us to the goal in one step.

It would be useful to know something about the conditions under

which strategies minimizing D will reach or converge on rt . The

following conjecture is supported by intuition and calculation but a

satisfictory proof is lacking.

CONJECTURE

If /*e S , strategies minimizing D will ensure that

lim x(T) = x* . If x*4 S , x(T) will reach, or converge to the point
T-40

in S nearest (in the sense of D ) to x* .

fte

The minimization of D subject to the restraints p > 0 and

pl' = 1 is a problem in mathematical programming which is discussed

in the Appendix. When a = 1 it turns out that there is a whole class

of strategies which will give the same value of D . It does not follow

that, when applied repeatedly, every member of this class will produce

the same trajectory because there are infinitely many steps which can be

taken from x(0) which yield the same value of D . When a = 2 the

solution is unique. It also minimizes D with a = 1 and the argument

of the Appendix may easily be extended to show that it minimizes D for

any even positive integer a > 2 . The strategies which we have selected

to examine in detail are the following.

The Strategy Si

This is one of those which minimizes D with a = 1 . It is defined

as follows. 'Compute y and replace all negative elements by zero. Re-
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scale the remainder so that their sum is 1 . This strategy is thus one

in which we allocate to each grade which is below strength an equal pro-

portion of their needs.

The Strategy S2

This is the strategy obtained by minimizing D with a = 2 . It

may be compared iteratively as follows. Compute

y
i
' = 0 if y

i
< 0

yi ' = y
1

i m
- {Y - 1} if y

i
> 0

where m is the number of non-negative y's and Y is their sum. If

,
,

y' > 0 then p = y' , otherwise treat the y
i

' s as original y
i

s

- - - _

and repeat the cycle as often as necessary to produce a positive vector.

The Strategy S3

In each time period a proportion x(T)w' of members leave the
- _

system. An equal number of replacements are allocated to the various

grades according to the chosen p . With this strategy we select

max y
i

and if max y > 1 , all of the recruits go into that grade.

i
i

If max yi < 1 , we bring the number in this grade up to its target

by allocating a proportion max yi to this grade. We then move orr

to the grade showing the next largest shortfall and treat that in the

same way. This procedure is continued until all of the recruits have

been dealt with.

It is easy to see that S
3

also minimizes D with a = 1 and

hence will reach the goal in one step if that is possible.
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The Strategy S4

Here we put all recruits into the grade having the largest yi .

In general, this does not seem a very desirable policy since it might

involve appointing all assistant professors in one year followed by

all full professors the next. Nevertheless it is useful to include

it for purposes of comparison with the other strategies.

,,

The final strategy which we shall consider was specifically

designed to ensure a smooth transition from x(0) to x* . We restrict

our attention to points x(T) satisfying

x(T + 1) = ax* + (1 - a) x(T), 0 < a < 1, T > 0 . (11)
- - -

The trajectory for such a policy is thus a straight line joining the two

points x(0) and x* . Substituting (11) in the basic equation
- -

ox* + (1 - a)x(T) = x(T)(P + w'p(T + 1)) .

- -

Solving this equation for p(T + 1) we find

p(T + 1) = (ax* + (1 - a)x(T) - x(T)P) /x(T)w'

The formal analysis just carried out may not yield a non-negative p

for any a . In this case no progress will be possible and the strategy

must be abandoned. Otherwise S
5

is defined as follows.

The Strategy. S5

Select the largest value of a(0 < a < 1) for which p(T + 1)

as given by (12) is non-negative.

This strategy thus moves as far as possible in the direction of

x* at each step. Like S1, S2 and S3 (but unlike S4) it will

(12)
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therefore reach x* in one step if that is possible. In practice

we have rarely found it possible to make any progress at all with this

strategy. When it can be used it is either equivalent to or no better

than one of the other strategies. For this reason it only appears in

one of the tables.

An obvious strategy if x* e S is the one suggested by Theorem

6 which uses a constant appointment vector given by

p = x*(I P)/x*w'

Although this strategy does not appear in our calculations we shall

be able to compare it with the others in certain cases.

Tables 1-5 summarize the results of calculations made using the

strategies Sl-S5 for two promotion matrixes of dimension 3 and 5 .

The calculations may not be fully representative and the conclusions

set out below must be interpreted with this remark in mind. We shall deal

with the tables one by one but the following remarks apply to them all.

(a) S
3
and S

4
are almost identical for these examples.

(b) S
2

tends to spread the recruits more widely, over the

grades than does S
1
but otherwise the strategies are

similar.

(c) The goal is reached within 10 steps on only one occasion

but when k = 3 the structure is often very close to the

goal after 5 steps. Rather more steps seem to be needed

when k = 5 .

Table 1

The goal here is the vertex of S which would be reached, in

the limit, by using the constant appointment vector p = (1 0 0).
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The strategies S3 and S4 starting from (0 1 0) turn out to be

identical with this constant strategy. In the case of the starts from

(1 0 0) and (0 0 1) the sequence p(T) becomes equal or very close

to this in every case as the structure approaches the goal. In this

example, all of the strategies produce a structure close to that

required in a very few steps.

Table 2

Here the goal is outside S and all strategies appear to be

converging on a point at or near the vertex used as the goal for Table

1. None of the strategies takes us very rear to the goal but all get

near to their limiting structure quite quiukly. There are interesting

differences between the sequences of ppointment vectors in this case.

Again; they appear to be converging to a limit.

Table 3

The starting points in this table are not the five extreme

points of X but three structures chosen to represent the spectrum

of possibilities. As when k = 3 there is little difference between

the strategies except now it is taking much longer to get close to

the goal. This is particularly true of the example in the first

section of the table. S
2

, S
3

, and S
4

are either near or equal to the

pure strategy (1 0 0 0 0) throughout or quickly converge to it but

S allows a much greater spread.
1

Table 4

This is our only example in which the goal is exactly attained.

Only Sl and S2 are successful but it would be premature on such

limited evidence to conclude that they will always show this super-
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iority. The goal cannot be maintained and beyond T = 4 there seems

little t. choose between the strategies. This is a case where a sequence

of pure strategies would obviously be unsuccessful, in the early

stages at least.

Table 5

This table is included to show a case where none of the strategies

is very successful. The two illustrated are never near to the goal in

every grade and matters are getting worse rather than better beyond

T = 5.
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TABLE lb: SEQUENCES OF APPOINTMENT VECTORS USED TO

ACHIEVE 'HE RESULTS OF TABLE la

Appointment Vectors for start at (1 0 0)

0 .135 .717 1 1 .970 .970 .976 .981 .985

S
1

0 0 0 0 0 ..030 .030 .024 .019 .015

1 .865 .238 0 0 0 0 0 0 0

0 0 .928 1 1 1 1 .995 .996 .998

S
2

0 0 0 0 0 0 0 .005 .004 .002

1 1 .072 0 0 0 0 0 0 0

S
0 0 1 1

3

and
0 0 0 0

S
4

1 1 0 0

Appointment Vectors for start at (0 1 0)

.690 1 1 .921 .908 .925 .941 .953 .963 .970

S
1

0 0 0 .099 .092 -075 .059 .047 .037 .030

.310 0 0 0 0 0 0 0 0 0

1 1 1 .986 .973 .983 .989 .993 .995 .995

S
2

0 0 0 .014 .027 .017 .011 .007 .005 .005

0 0 0 0 0 0 0 0 0 0

S
3

1
1

and 0 0

S
4 0

0
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TABLE lb (Continued)

Appointment Vectors for start at (0 0 1)

.500 .559 .641 .719 .782 .831 .868 .896 .918 .935

S
1

.500 .441 .359 .281 .218 .169 .132 .104 .082 .005

0 0 0 0 0 0 0 0 0 0

S
2

.500

.500

0

.639

'.361

0

.747 .827 .883 .922 .949 .966 .978 .986

.253 .173 .117 .078 .051 .034 .022 .014

0 0 0 0 0 0 0 0

0 1 1 .956 .940 .969 .984 .992 .996 AM
S
3

1 0 0 .024 .060 .031 .016 .008 .004 .002

0 0 0 0 0 0 0 0 0 0

1 0 1 1

S4 0 1 0 0

0 0 0 0

Note: At T = 1 x*
1
- x1(0)(0) = x* - x2(0) = 0.286 when starting from

(0 0 1) . S3 treated grade 1 as the largest differ-

ence and S
4

chose grade 2 . This also accounts for the big

difference between the S
3

and S
4

rows in the (0 0 1) part

of Table la for T = 2 .
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TABLE 2b: SEQUENCES OF APPOINTMENT VECTORS USED TO

ACHIEVE THE RESULTS OF TABLE 2a

Appointment Vectors for start at (1 0 0)

S
1

0

0

.143

0

.558

0

.801

0

.883

0

.875

0

.860

0

.853

0

1 .857 .442 .199 .117 .125 .140 .147

0 0 .710 .975 .935 .919 .913 .911

S2 0 0 0 0 0 0 0 0

1 1 .290 .025 .005 .081 .087 .089

S3 0 0 1

S
and 0 0 0 . .

4 1 1 0 .

Appointment Vectors for start at 0 1 0)

.852 .851

0 0

.148 .149

.910 .909

0 0

.090 .091

. 1

0

0

.600 .849 .970 .925 .872 .855 .851 .851 .851 .851

S
1
0000000000

.400 .151 .030 .075 .128 .145 .149 .149 .149 .149

1 1 1 .989 .918 .913 .910 .910 .909 .909

S2 0 0 0 0 0 0 0 0 0 0

0 0 0 .011 .082 .087 .090 .090 .091 .091

S3 1 1

and 0 0
S4

0 0
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TABLE 2b (Continued)

Appointment Vectors for start at (0 0 1)

.600 .698 .834 .41i .873 .833 .041 .000 .051 .851

.400 .302 .146 0 0 0 0 0 0 0

0 0 0 0 .127 .167 .158 .152 .149 .149

.750 .819 .957 1 .890 .893 .903 .907 .908 .909

S
2

.250 .181 .043 0 0 0 0 0 0 0

0 0 0 0 .110 .107 .097 .093 .092 .091

1 1 .976 1 . . 1

S
3

0 0 .024 0 . .
0

0 0 0 0 . . 0

1

S
4

0 0

0
0
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Tables 3 , 4 and 5 relate to a system with the following parameters

k = 5

.65

0

.20

.70

0

.15

0

0

0

0

P = 0 0 .75 .15 0

0 0 0 .85 .10

0 0 0 0 .95

w = (.15 .15 .10 .05 .05)

A point is in S if

x2 (2/3)x1 x3 (3/5)x x4 > x x5 > 2x
2

>
-- 1 ' 3

>
2 ' 4 3 5 4

The goal in Table 3 is obtained by taking the equality sign in each

case. This gives the structure with the gieatest degree of "tapering"

towards the top which can be maintained. The other goals in Tables
4 an

4 and 5 lie outside S .
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TABLE 3b: THE SEQUENCES OF APPOINTMENT VECTORS

LEADING TO THE STRUCTURES GIVEN IN TABLE 3a

Appointment Vectors starting at (.05 .10 .15 .30 .40)

pl
.668 .665 .654 .655 .663 .674 .687 .700 .713 .725

Si P2
.312 .305 .289 .274 .261 .250 .240 .231 .223 .216

P3 0 .030 .057 .071 .076 .078 .013 .060 .064 .059

S
2

PI
1 1 1 .989 .984 .989 .992 .994 .996

P2
0 0 0 0 .011 .016 .011 .008 .006 .004

S
3

and : pi 1 1 1 1 1 1 1 1 1 1

S4

Appointment Vectors starting at (.2 .2 .2 .2 .2)

pl

S
P2

1 P3

P5

P1S2
I p2

S
3 ,

and : p

S
4

1

.749 .808 .848 .855 .864 .873 .882 .889 .896 .898

.102 .149 .152 .145 .136 .127 .118 .111 404 .00,

0 0 0 0 0 0 0 0 0 .005

0 0 0 0 0 0 0 0 0 0

1 1 1 1 .995 .992 .994 .996 .997 .998

0 0 0 0 .005 .008 .006 .004 .003 .002

1 1 1 1 1 1 1 1 1 1

1
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TABLE 3b (Continued)

Appointment Vectors starting at (.40 .30 .15 .10 .05)

P1
.186 .580 .792 .914 .954 .442 .941 .945 .949 .953

P2
0 0 0 0 .025 .058 .059 .055 .051 .047

S2
p4

.060 .044 0 0 0 0 0 0 0 0

P5 .754 .416 .208 .086 .022 0 0 0 00 0

S
2

0 .849 .927 .949 .966 .978 .987 .993 .997 1

P5 1 .151 .073 .051 .034 .022 .013 .007 .003 0

S
3

and

0 1 . . . . . 1

S
4

P5 1 0 . . . . . 9
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TABLE 4a: AN EXAMPLE IN WHICH THE GOAL IS ACHIEVED

AT I = 4 BY S
1

AND S
2

WHERE THE GOAL IS NOT MAINTAINABLE

xl x2 x3

Start .2 .2 .2 .2 .2

S1 .085 .152 .162 .261 .340

S
2

.085 .152 .162 .251 .351

S3

085 .152 .162 .287 ..315 I

S4 I

S
5

.140 .160 .180 .240 .280 i

1

S
1

.048 .098 .148 .297 .410

S
2

.048 .098 .148 .298 .410

S
3

.029 .201 .151 .301 .417

S
4

.023 .075 .179 .295 .427

S
5

.052 .101 .151 .299 .397

S
1

.041 .088 .136 .2,6 .449

S
2

.038 .088 .138 .288 .450

S
3

.021 .100 .148 .276 .455

S
4

.031 .121 .130 .254 .464

S
5

Cannot proceed beyond T = 5

Goal .05 .10 .15 .30 .40
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S1

S
2

S
3

S
4

TABLE 4b: THE SEQUENCES OF APPOINTMENT VECTORS

LEADING TO THE STRUCTURES GIVEN IN TABLE 4a

131
0

P2
0

p3 0

p4 .345

p5 .655

131
0

P2
0

p3 0

D
4

.050
'

D . 950

Pi

P2

P3

P4

P5

P2

P3

P4

P5

0

0

0

0

1

0

0

0

0

1

p1 .400

1
p2 0

S
5

p
3

.100

p4 .200

p5 .300

0 0 .190* .212 .207 .203 .199 .195 .192

0 0 .036 .242 .243 .243 .243 .243 .242

0 .052 .267 .273 .273 .274 .274 .275 .275

.391 .4U- .457 .273 .277 .211 .2M .21S .21111

.609 .462 .050 0 0 0 0 0 0

0 0 .191* .207 .199 .192 .185 .179 .172

0 0 .036 .241 .243 .244 .245 .246 .247

0 0 .310 .276 .277 .279 .280 .281 .283

.550 .628 .439 .276 .281 .286 .290 .294 .298

.45050.372 .024 0 0 0 0 0 0

0 0 .123 0 .439 0 .417 0 0

0 0 0 .335 .331 .060 .498 0 .549

0 0 .310 .335 .230 .366 .085 .378 .451

1 .113 .566 .329 0 .574 0 .622 0

0 .887 0 0 0 0 0 0 j)

0 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 1

0 0 0 1 0 0 0 1 0

1 0 1 0 0 1 0 0 0

0 1 0 0 0 0 0 0 0

.313 .215 .102 0

0 0 0 .017
Strategy

.111 .124 .138 .162
Terminates at

.259 .325 .401 .470

.316 .336 .359 .351
T 5

* Indicates the point at which the goal is achieved
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TABLE 5a: TWO EXAMPLES WHERE S
1

AND S
2

ARE UNSUCCESSFUL

IN REACHING THE GOAL

In both cases the goal is outside S

xl x2 x3 x4 x5
x2 x3 x4 x5

....

T Start .2 .2 .2 .2 .2 .2 .2 .2 .2 .2

2
S
1

.200 .217 .167 .197 .220 .085 .152 .283 .258 .223

S
2

.250 .172 .162 .197 .220 .085 .152 .322 .222 .220

5

S
1

.203 .224 .148 .182 .243 .034 .111 .293 .292 .269

S
2

.276 .176 .128 .178 .243 .023 .097 .347 .275 .258

S
1

.203 .225 .144 .161 .266 .024 .088 .255 .291 .341

10
S
2

.290 .190 .114 .145 .261 .003 Aft .306 .304 .331

Goal .40 .30 .15 .10 .05 .05 .15 .40 .30 .10
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TABLE 5b: THE SEQUENCES OF APPOINTMENT VECTORS

LEADING TO THE STRUCTURES GIVEN IN-TABLE 5a

Appointment Vectors when the Goal is (.40 .30 .15 .10 .05)

S1
1

P2

P3

P2

.692 .706 .714 .718 .715 .712 .711 .710

.308 .294 .286 .282 .276 .273 .271 .270

0 0 0 0 .009 .015 .018 .020

1 1 1 1 .985 .987 .990 .991

0 0 0 0 .015 .013 .010 .009

Appointment Vectors when the Goal is (.05 .15 .40 .10)

pl
0 0 0 .060 .094 .105 .109 .109

S1
P2

0 0 .116 .192 .230 .248 .255 .258

P3 .688 .738 .719 .661 .631 .619 .612 .608

P4
.313 .262 .165 .086 .045 .029 .024 .026

p2 0 0 0 .091 .203 .200 ..191 .179

S2 p3 1 .895 .905 .909 .797 .800 .809 .821

P4
0 .105 .095 0 0 0 0 0

.710 .710

.269 .269

.021 .021

.992 .993

.008 .007

.107 .106

.258 .257

,604 .601

.030 .047

.165 .150

.835 .850

0 0
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7. Strategies Which Look Two Steps Ahead

Although the strategies investigated so far perform reasonably

well we might hope to improve upon them by looking farther ahead.

We shall therefore suggest two further classes of strategies which take

into account what the position will be after the next step has been taken.

The Class of Strategies S'

This class is a natural ex%ension of that which gave rise to

S1 and S2 . Instead of seeking to minimize, at the start, the distance

between x(1) and x*, we now consider the distance between x(2) and x*.

The problem is then one of minimizing a function such as

k
i1 lx

i
* x

i
(2)1a , a > 0

=1

with respect to p(1) and p(2) subject to the usual restraints.

The Class of Strategies S"

Here the object ib to aim initially nr for x* itself but for

some other point from which x* can be reached in one step. The moti-
-

vstiod for this is that there may -ell be points from which x* is

reachable in one step which are much more reasonable than x* . Let-

X*---5ToTe the set.of points from which x* can be reached in one step;

then the following would be a possible way to proceed. At time T use

one of the strategies S1 S5 to aim for the point in X* nearest

to x(T) . If this point can be reached then x* can be reached in

one further step.

Other classes of strategies can easily be devised by extension of

these ideas but it would be better to explore t!',-.2 already proposed
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before proceeding further.

8. Suggestions for Further Work

The work described in this report is incomplete at almost every

point. Below we list some of the topics on which further work is needed

if the control problem is to be fully understood.

(a) Throughout we have assumed that the total size of the

organization was fixed. The theory needs to be developed

for organizations whose size is changing in time.

(b) The class of strategies S' and S" require further

investigation. A comparison between the original class

S and S' or S" would throw some light on whether it is

worthwhile to look beyond the next step when choosing p .

(c) The question of how one can stay near to x* when x*

is outside S needs further investigation. It is known

that a trajectory can move outside S infinitely often but

it is not clear whether it is possible to pursue a path which

is "nearer" to x* than the nearest point on the boundary of

S.

(d) -The-trategies should be tried out using data for the larger

colleges on the various campuses.

9. Implications for Policy

The work described in this report is a step towards a general

theory of control for Markov chain models of graded manpower systems.

As such it is primarily a theoretical exercise intended to give some

insight into the dynamics of such systems. It was, however, motivated

I



by the problem facing a university whose faculty structure was moving

in an unwanted direction and there are several conclusions which can

be drawn which have important implications for those faced with that

problem. For any organization, in which the assumptions of the model

apply, the following conclusions hold.

(a) Not all structures are attainable or maintainable by control-

ling the appointment policy alone. Those which are can be

found from results given in this report. Those which are not

can only be reached by making changes in the promotion rates

or by contriving to alter the leaving rate. The kind of changes

needed can also be determined from the results given here.

(b) Some changes in structure can be brought about by appropriate

variations in the appointment'policy. The best way to do

this is still an open question but several strategies have

been proposed which seem to give satisfactory results. Of

these S
1

strategy described in Sect!..m 5 is both easy to

determine and satisfactory in its performance.

17_

49
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APPENDIX

The implementation of the strategies S1 and S2 requires the

minimization of

k
D = E lyi - pila

i=1

k
for a = 1 and 2 where p > 0 (i = 1, 2, . . .k) and E pi = 1 .

1=1

We show here how the results given in the text may be justified

taking firat the case a = 1 .

The problem of minimizing D when a = 1 can be converted

into a problem in linear programming by a well known device as follows.

Transform to new variables x
i

+
and x

i
given by

It follows that

xi
+

= yi - pi if yi > pi

= 0 otherwise,

x -(Yi P
i
) if Yi < Pi

= 0 otherwise.

ly pil = xi+ + x

and so the function to be minimized is

k
D = E (x

i

+
+ x

i
)

1=4
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The restriction

becomes

k
E pi = 1

1=1

E x = E xi

1=1 1=1

and the inequalities pi > 0 become

x <
i Yi

for those i for which yi > 0

x
i

> -y
i

for those i for which y < 0 .

Introduce slack variables vi
> 0 such that xi = vi yi

and let E
+

and E denote summation with respect to

i over those values for which yi > 0 and yi < 0 respectively.

Then eliminating Ex
i

+
from D using (Al) and substituting

x.
1

vi - yi we have

D = -2E y1 + 2E+v + 2 xi-

This clearly achieves a minimum value of -2E y
i

when x
i

= -y
i

if y
i
< 0 . This implies p

1
= 0 if y

i
< 0 . The complete

solution can easily be found by revetting to the original notation

for now we have ro find pi s (for yi > 0) which make

- pi I Eyi = -2E Yi
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It is clear that Any. set of p's satisfying yi > pi will yield

this minimum value. In particular the p's adopted for S
1

and for

S
3

satisfy this equation and, as we shall now see, so do those of

S2

When a = 2 the problem can be interpreted geometrically.

D can be thought of as the aquaria distance from y to the point p .

It must lie on the hyperplane pl + p2 + . . . pk = 1 in the orthant

p > 0 ; call this region P . The vector y lies on the same

hyperSane but not, in general, in the positive orthant. The problem

is thus one of finding the nearest point in P to the given point

y . Let 4

k
2

(I) = E (yi - pi) + 2a E pi
1=1 1=1

where a is an undetermined multiplier. Then we have to find the

minimum of 4 subject to p > 0 . Denote the minimizing value of

p by p' then at this point

which implies

I

= 0 if pi' > 0

> 0 if pi' = 0

Pi ' Yi - a if y > a

= 0 if yi < a
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for some a which will be a function of the y's . The multiplier .

a is determined by the condition

k
pi = 1

1=1

The iterative procedure described in Section 5 is one way of finding pi'

and is will suited to automatic computation. A simple method with

pencil and paper is to plot

where

k

< y cx>

i=1

<x> = x if x > 0

= 0 otherwise

as a function of a , finding the point at which the sum is one. This

gives the value of a to substitute in

pi' = a
yi
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